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ABSTRACT

The Canadian medical residency match has received considerable attention
in the medical community as several students go unmatched every year.
Simultaneously, multiple residency positions go unfilled, largely in Quebec,
the Francophone province of Canada. In Canada, positions are designated with
a language restriction, a phenomenon that has not been described previously in
the matching literature. We develop a model of matching with compatibility
constraints, where, based on a dual-valued characteristic, a subset of students
is incompatible with a subset of hospitals, and show how such constraints lead
to inefficiency. We derive a lower bound for the number of Anglophone and
Francophone residency positions such that every student is matched for all
instances of (a form of) preferences. Our analysis suggests that to guarantee
a stable match for every student, a number of positions at least equal to the
population of bilingual students must be left unfilled.
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1. INTRODUCTION

The seminal paper by Gale & Shapley (1962) introduced the deferred accep-
tance (DA) algorithm as a mechanism for establishing stable matchings

in two-sided matching problems. Since then, applications of DA have flour-
ished such as the well-known medical residency match. This application was
motivated by Roth’s observation that the National Resident Matching Program
(NRMP) in the United States, which is responsible for allocating medical
school graduates to their post-graduate training (also called a residency), had
independently arrived at the Gale-Shapley DA algorithm (Roth, 1984, 2003). In
1999, the DA algorithm was modified to include the ability for student couples
to apply to match together. This modified algorithm is called the Roth-Peranson
algorithm (Roth & Peranson, 1999), and was adopted in many other countries,
including Canada (Canadian Residency Matching Service, 2019). Since then,
matching theory has remained a fertile field, both theoretically and practically,
with the question of real-world constraints inspiring much of the matching
work in the 21st century.

In Canada, medical students apply to be matched to postgraduate training
(also called a residency) at a Canadian hospital through the Canadian Residency
Matching Service (CaRMS) (Canadian Residency Matching Service, 2019),
which uses a version of the DA algorithm.1The unique constraint that exists
is that some positions are designated for French-speaking students in order to
provide French services to the public. This is due to the status of French as
the second official language of Canada (Esman, 1982). While this guarantees
equal status for French and English in federal jurisprudence, some provinces
also give French special status. The province of New Brunswick, for example,
is officially bilingual, while the province of Quebec, Canada’s largest province,
is officially unilingually French (Esman, 1982). As well, French is often taught
as a second language in English-speaking provinces like Ontario, while English
is also taught in Francophone provinces (Esman, 1982).

1 The CaRMS actually runs four different matches (2019): 1. R-1: This is what graduating
or graduated medical students apply to for their postgraduate training. 2. MSM: Medicine
Subspecialty Match. This is for residents currently in an internal medicine program seeking to
enter subspeciality training. 3. FM/EM: Family Medicine/Emergency Medicine. This is for
residents who are currently in or have completed family medicine training and wish to pursue
further training in emergency medicine. 4. PSM: Pediatric Subspecialty Match. This is for
residents currently in a pediatric residency program who wish to pursue subspecialty training.
In this paper, when we talk about the residency match, we are referring to the R-1 match.
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According to CaRMS data (2019), in the 2019 R-1 match, 103 out of 2984
Canadian medical graduates (CMG’s) went unmatched - meaning that 96.5%
did indeed obtain a residency position. While comparing favorably to other
residency matching clearinghouses - for example, in the US, 79.6% of applicants
to the NRMP were matched in 2019 (National Resident Matching Program,
2019) - much attention in Canada has been drawn to the issue of unmatched
medical residents. The Canadian Medical Association (2019) has increasingly
been sounding the alarm over the issue of unmatched medical students, as the
number of unmatched CMGs steadily increasing every year. Other professional
organizations, like the Association of Faculties of Medicine of Canada (2018),
abbreviated as the AFMC, have been lobbying the government to respond as
well (provincial governments are responsible for funding residency positions).
It is worth noting that unmatched medical students cannot practice medicine,
despite nearly a decade in school, and are often left with little in terms of job
prospects (Association of Faculties of Medicine of Canada, 2018).

In the Canadian medical literature, much discussion has been ongoing as
to what to do about the CaRMS. Wilson & Bordman (2017), in a commentary
in the Canadian Medical Association Journal, the preeminent general medical
journal in Canada, declared that the CaRMS was “broken", citing the fact
that 68 graduates went unmatched, while 64 residency positions were unfilled
(including 56 in family medicine in the province of Quebec). This commentary
attracted attention and responses in the subsequent months, including those
from doctors, deans of medical schools, the CaRMS itself, and impassioned
personal anecdotes from unmatched graduates (Sorokopud-Jones, 2018; Yeung,
2018; Willett, 2017; Silverberg & Purdy, 2018; Persad, 2018a,b; Moineau,
2018). News media have picked up on the problem of unmatched residents in
recent years as well, with considerable coverage surrounding the tragic suicide
of Dr. Robert Chu who went unmatched despite attempting to do so twice
(Warsh, 2017). The frustration over the CaRMS has even spilled into some
professional associations which staged demonstrations outside the Ontario
provincial legislature (Association of Faculties of Medicine of Canada, 2018).

Wilson and Bordman’s commentary, as well as match data analysis by the
AFMC, demonstrated there was a seeming disconnect between the two sides of
the matching market. There are more positions than graduates (Association of
Faculties of Medicine of Canada, 2018), which at first glance is a favorable
situation. Again, comparing with the United States, there are indeed fewer
positions than students in the NRMP, so the sub-100% match rate is perhaps
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easily explained away by that disparity (National Resident Matching Program,
2019). However, in Canada, there are approximately 102 positions for every
100 medical graduates (Association of Faculties of Medicine of Canada, 2018).
In addition, it seems that unfilled residency positions tend to largely be in
Quebec (Wilson & Bordman, 2017), and Quebec graduates match to other
provinces more than other provinces’ students match to Quebec (Association of
Faculties of Medicine of Canada, 2018). All in all, the plight of the unmatched
is one of the most important issues facing the Canadian medical community
today.

We now review some related literature. Observations of “undesirable" (from
a policymaker’s perspective) matches yielded by current matching algorithms
led to work on possible modifications to the basic DA algorithm. This is not
a new problem. As far back as fifty years ago, McVitie & Wilson (1970)
studied the stable marriage problem with unequal sets of men and women.
Clearly, by the Pigeonhole Principle (Lakins, 2016), some elements will remain
unmatched. McVitie & Wilson (1970) proved the Rural Hospital Theorem,
which states that unmatched participants in one stable matching are unmatched
in all stable matchings. This result was later restated by Roth (1986) as, in
the resident-hospital matching market, “any hospital that fails to fill all of its
positions in some stable outcome will not only fill the same number of positions
at any other stable outcome, but will fill them with exactly the same residents.”
The theorem was termed the Rural Hospital Theorem on the basis that rural
hospitals tend to have greater difficulty filling their residency positions as they
are seen as less desirable than urban ones. From these early results, we can see
that the idea of imbalances and disparities arising in matching markets is not
new.

The aforementioned urban-rural disparity was observed in the data in
countries that used centralized clearinghouses for their medical residents, and
some countries became proactive in attempting to manipulate the matching
algorithm in order to correct the imbalance. Kamada & Kojima (2010,
2012) studied the Japanese medical residency match, which uses the student-
proposing DA. In response to public pressure about the lack of rural doctors,
the Japanese government instituted regional quotas based on prefectures
(government districts) (Kamada & Kojima, 2010), the idea being to set caps on
how many residents may work in urban prefectures. Kamada & Kojima (2010)
demonstrated that such tampering with the DA algorithm results in inefficiency
and possible instability, as well as a lower match rate (fewer doctors overall
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receive positions). They proposed a flexible deferred acceptance algorithm that
results in stability and respects regional quotas, and show, through simulations,
that while this still yields a lower match rate than normal DA, it does fill more
positions than the Japanese implementation of regional quota DA (Kamada &
Kojima, 2012).

The opposite problem of setting floor constraints instead of ceiling con-
straints is seemingly less tractable. Kamada & Kojima (2010, 2012) point out
that floor constraints are likely much harder to use. For example, if no student
wants to be matched to a specific region, then individual rationality would be
compromised, and even with an individually rational matching, stability is not
guaranteed (Kamada & Kojima, 2015). Recent work in the computer science
literature has found that checking the mere existence of a feasible matching
with floor constraints is NP-complete (Goto et al., 2016). It remains unclear
whether such constraints are tractable, and what the definitions of concepts
like individual rationality and stability would be in such situations (Goto et al.,
2016).

Our paper’s contribution is thus twofold. From an economic theory point of
view, we study a novel situation that has not been described in other well-studied
matching markets in the literature. While there is a growing literature on
introducing constraints into matching problems, these papers focus on other
constraints, such as quotas. The situation described above in Canada, where
due to language designations, a subset of students is incompatible with a subset
of residency positions, has not been treated by other papers, to the authors’
knowledge. Secondly, with regards to real world applications, given the intense
scrutiny around the Canadian residency match, this paper aims to build a
theoretical basis that can explain how and why the much-derided outcomes
described above have arisen. On this basis, possible solutions to the problems
affecting the CaRMS can be developed. This paper therefore serves as an
extension of the theory of matching as well as an analysis of the CaRMS match.

2. MODEL

2.1. Preliminaries

As per Roth & Sotomayor (1992), our hospital-residents model is a four-tuple
〈𝐻, 𝐼, 𝑞, 𝑃〉:
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• 𝐻 is a finite set of hospitals.2

• 𝐼 is a finite set of students. The sets 𝐻 and 𝐼 are disjoint.

• 𝑞 is a vector of hospital capacities: 𝑞ℎ for ℎ ∈ 𝐻 gives the capacity of
hospital ℎ.

• 𝑃 is a collection of preference relations, such that:

– For each 𝑖 ∈ 𝐼, 𝑃𝑖 denotes the preferences of student 𝑖 over 𝐻 ∪ {∅},
hence we derive the strict preference relation �𝑖; so, ℎ1 �𝑖 ℎ2
means that student 𝑖 strictly prefers hospital ℎ1 to ℎ2.

– For each ℎ ∈ 𝐻, 𝑃ℎ denotes the preferences of hospital ℎ over
𝐼 ∪ {∅}, hence, as with the students, we derive the strict preference
relation �ℎ, which is defined similarly.3

Student 𝑖 is said to be acceptable to hospital ℎ if 𝑖 �ℎ ∅, and hospital ℎ is
acceptable to student 𝑖 if ℎ �𝑖 ∅. Alternatively, we will use throughout this
paper the terminology that student 𝑖 applies to, or is an applicant of, hospital
ℎ, if ℎ �𝑖 ∅.4

Note that, since hospitals have a capacity of more than one, in reality they
would have preferences between sets of students, not necessarily individual
students. However, we will assume that hospitals have responsive preferences,
meaning that replacing a less-preferred student with a more-preferred one,
or filling a vacancy with an acceptable student makes it better off (Roth &
Sotomayor, 1992).

A matching is a function 𝜇 : 𝐻 ∪ 𝐼 → P(𝐻 ∪ 𝐼) such that (Roth &
Sotomayor, 1992):

2 Note this is purely semantics. Medical professionals may protest that in Canada it is actually
universities that “host" residency positions, and have affiliations with hospitals which is where
the resident would actually practice. This is true, however we are using “hospitals" as this is
the standard terminology used in the matching literature.

3 If for some student 𝑖, ∅ �𝑖 ℎ, then 𝑖 prefers being unmatched to being matched to ℎ. If for some
hospital ℎ, ∅ �ℎ 𝑖, then ℎ prefers keeping some position unfilled rather than being matched to 𝑖.

4 This language of applying is from the real-world set-up of the residency match, where, when
medical students seek residencies, they go through an application process entailing sending a
CV, reference letters, and participating in an interview. At the end of the process, students
submit a ranking to the CaRMS (or whichever centralized matching system) of the hospitals
they applied to, and similarly hospitals rank the students that submitted applications to them
according to the strength of their applications.
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1. No hospital exceeds its quota, with some positions possibly left unfilled:
𝜇(ℎ) ⊆ 𝐼 ∪ {∅} such that |𝜇(ℎ) | ≤ 𝑞ℎ for all ℎ ∈ 𝐻,

2. each student is matched to at most one hospital or not at all: 𝜇(𝑖) ⊆
𝐻 ∪ {∅} such that |𝜇(𝑖) | ≤ 1 for all 𝑖 ∈ 𝐼,

3. student 𝑖 is matched to hospital ℎ if and only if hospital ℎ is matched to a
set containing student 𝑖: 𝑖 ∈ 𝜇(ℎ) ⇐⇒ 𝜇(𝑖) = {ℎ} for all ℎ ∈ 𝐻 and
𝑖 ∈ 𝐼.

We call a pair (ℎ, 𝑖) ∈ 𝐻 × 𝐼 a blocking pair if 𝑖 and ℎ are both acceptable
to each other, and both of the following two conditions hold (Roth & Sotomayor,
1992):

1. ℎ �𝑖 𝜇(𝑖), and,

2. either 𝑖 �ℎ 𝑖
′ for some 𝑖′ ∈ 𝜇(ℎ), or, |𝜇(ℎ) | < 𝑞ℎ and 𝑖 �ℎ ∅

From the concept of a blocking pair we can define one of the central
concepts in matching theory: stability. A matching 𝜇 is stable if and only if
there do not exist any blocking pairs under 𝜇 (Gale & Shapley, 1962).

2.2. Deferred acceptance algorithm

The current CaRMS configuration uses the Roth-Peranson algorithm, which is
the student-proposing deferred acceptance algorithm (Roth & Peranson, 1999).
As well, this is the algorithm that we analyze in the context of matching resi-
dents to residencies throughout this paper. The student-proposing deferred
acceptance (DA) algorithm is defined as follows (Roth & Sotomayor, 1992):

Step 1. Each student 𝑖 proposes to its most preferred hospital. A hospital
ℎ receiving more than 𝑞ℎ proposals shortlists its 𝑞ℎ most preferred students
according to its preferences 𝑃ℎ, and rejects the rest, while a hospital ℎ receiving
less than 𝑞ℎ proposals shortlists all of its proposals.

Step 𝑘 . Any student 𝑖 who was rejected at step 𝑘 −1 proposes to the hospital
it prefers the most among the hospitals it applied to (i.e. hospitals it finds
acceptable) that hasn’t rejected it yet. At each step, each hospital ℎ takes the
𝑞ℎ top students from its shortlist and its proposers, and rejects the others.

The algorithm terminates when there are no more rejections. At termination,
the matching is given by the shortlists of the hospitals in the most recent step.
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The algorithm also gives a stable matching if the hospitals propose (Roth &
Sotomayor, 1992), although this can be a different matching than the one given
by the student-proposing version. Note that it is possible for there to be stable
matchings other than the one yielded by the DA algorithm (Gale & Shapley,
1962).

2.3. Introducing compatibility constraints

We build upon the basic model in Section 2.1. Our motivation for this model
comes from the CaRMS language constraints. Namely, every student can be
designated as either Anglophone, Francophone, or both (ie. bilingual). On
the other hand, the set of hospitals can be partitioned into two disjoint sets
on the basis of language as well.5 Student 𝑖 and hospital ℎ are compatible
only if they share the same language characteristic, and are incompatible
otherwise. Thus, in our formulation, an English-speaking student can apply
only to Anglophone hospitals, and French-speaking students can apply only to
Francophone hospitals, and bilingual students can apply to both Anglophone
and Francophone hospitals.6 In addition, hospitals rank only the students that
apply to them.7

We can generalize the idea of such language incompatibilities to any sort of
incompatibility based on some arbitrary two-valued characteristic. In general,
we define a matching with compatibility constraints problem as a standard
hospital-residents model as per Section 2.1 with the following additional
constraints:

5 There is, of course, the situation where one hospital can have some Anglophone positions and
some Francophone positions. However, we can simply imagine this hospital as two different
hospitals, one containing all the Anglophone positions, and one containing all the Francophone
positions. Therefore, the set of hospitals can always be partitioned into two disjoint sets:
English and French.

6 This is the same as having French-speaking-only students prefer no match over a match with
Anglophone hospitals, and vice versa for English-speaking-only students.

7 Note that, in reality, it is the hospitals who impose such restrictions - for example, a hospital
restricts its positions to French speakers. It does not necessarily follow that English-speaking
students will not apply to Francophone hospitals. However, Irving et al. (2008) have shown
that one can assume without loss of generality that preferences are consistent in two-sided
matching problems, meaning that for hospital ℎ and student 𝑖, ℎ �𝑖 ∅ if and only if 𝑖 �ℎ ∅.
Therefore, it follows that though these language restrictions are exogenously imposed by the
hospitals, we can safely say that the students also do not apply to hospitals which would find
them unacceptable due to language constraints.
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English (HE)

Hospitals (H)Students (I)

French (HF )

English-only (IE − IE,F )

Bilingual (IE,F = IE ∩ IF )

French-only (IF − IE,F )

shows compatibility

Figure 1: Schematic of matching with compatibility constraints applied to the
Anglophone(𝐸)/Francophone(𝐹) constraints in the CaRMS

• There is a two-valued characteristic 𝐶 = {𝑐1, 𝑐2}.

• Each student 𝑖 ∈ 𝐼 has the characteristic 𝑐1, 𝑐2, or both. Let the set of
students with characteristic 𝑐1 be denoted as 𝐼1, and the set of students
𝑐2 be denoted 𝐼2, such that 𝐼 = 𝐼1 ∪ 𝐼2. Let the intersection of these sets
𝐼1 ∩ 𝐼2 be denoted 𝐼1,2. We restrict the sets 𝐼1 − 𝐼1,2 and 𝐼2 − 𝐼1,2 (the
sets of students who only have 𝑐1 and who only have 𝑐2, respectively) to
be non-empty.

• There is a partition of hospitals 𝐻 into two disjoint sets 𝐻1 and 𝐻2,
which correspond to the characteristics 𝑐1 and 𝑐2.

• A student-hospital pair (ℎ, 𝑖) is compatible if they share the same
characteristic, and incompatible otherwise. A student is unacceptable
to a hospital and a hospital is unacceptable to a student if they do
not share the same characteristic. Hence, a student can only apply to
compatible hospitals, however they may not apply to all. See Figure 1
for a representation.

We now apply this terminology in the context of our example. Our
characteristic set is𝐶 = {𝐸, 𝐹}, where 𝐸 is the English-speaking characteristic,
and 𝐹 denotes the French-speaking characteristic. English-speaking-only
students 𝐼𝐸 − 𝐼𝐸,𝐹 are incompatible with the Francophone hospitals 𝐻𝐹 ,
while the French-speaking-only students 𝐼𝐹 − 𝐼𝐸,𝐹 are incompatible with the
Anglophone hospitals 𝐻𝐸 . This is shown in Figure 1.
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3. RESULTS

3.1. Stability

Stability is an important consideration in matching markets. As Roth &
Sotomayor (1992) have shown, instability often leads to a collapse of matching
markets. In order to demonstrate stability, we can show that the matching with
compatibility constraints is an instance of the stable marriage with incomplete
preferences problem (smi problem). First introduced by Gale & Sotomayor
(1985), an smi problem is a one-to-one matching problem where preferences
are not complete, meaning that some hospital-student pairs are not mutually
acceptable. The following lemma will help us to establish stability.

Lemma 1. The hospital-residents problem with compatibility constraints is an
instance of the smi problem.

Proof. Let 𝑆 be a finite set of residency positions. For every hospital ℎ ∈ 𝐻

with quota 𝑞ℎ, construct 𝑞ℎ copies of ℎ, each copy with the same preference
relation as ℎ, and each copy with capacity of 1. Place these copies in 𝑆. Rewrite
the preference relations of every student 𝑖 ∈ 𝐼 by replacing every hospital ℎ ∈ 𝑃𝑖

with a list of the elements of 𝑆 that were derived from ℎ, arbitrarily breaking ties
to maintain strict preferences. Now, the many-to-one sided matching problem
between 𝐼 and 𝐻 has been translated into a one-to-one matching problem
between 𝐼 and 𝑆; i.e. it is a stable marriage problem. Due to compatibility
constraints, preferences are incomplete (i.e., some hospital-student pairs are
not mutually acceptable, per the definition of Irving et al. (2008)). Therefore,
it is a stable marriage problem with incomplete preferences. �

This result allows us to immediately establish stability, as follows.

Corollary 1. With compatibility constraints, DA yields a stable matching.

Proof. Gale & Sotomayor (1985) showed that the DA algorithm yields a stable
matching for the smi problem. Combining this result with Lemma 1 completes
the proof. �

Therefore, we have shown that even when compatibility constraints are
introduced as per Section 2.3, the DA algorithm still finds a stable matching.
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3.2. Existence of unmatched students in stable matchings

As touched upon in the introduction of the paper, a key issue in the CaRMS
is that some students go unmatched, despite more residency positions than
students. As well, many positions also go unfilled, largely in Quebec. With our
matching with compatibility constraints framework, we can demonstrate that
such a result is theoretically possible with the following motivating example.

Consider a case where there are one English-speaking-only student, one
bilingual student, and one French-speaking-only student. At first glance it
seems that one should only need three positions, since there are only three
students, say 2 Anglophone and 1 Francophone positions. But, the problem
with this is that if the bilingual student places the Francophone position as
first in his preferences, and likewise the Francophone position does so to the
bilingual student, they will be matched after running student-proposing DA.
This leaves the French-only student without a position. On the other hand,
if there are 1 Anglophone and 2 Francophone positions, then the bilingual
student could out-compete the English-speaking-only student analogous to the
above case, leaving the English-speaking-only student without a position.

This contrasts with the well-known result that when there are as many
students as residency positions, and preferences are complete, then there are
no unmatched students and no unfilled positions after running DA (Roth &
Sotomayor, 1992).

We can look further at the case where there are more residency positions
than students. For example, in the CaRMS, there are about 102 positions for
every 100 students (Association of Faculties of Medicine of Canada, 2018).
Observe that in the example where the bilingual student ranks the Anglophone
position first, and vice versa the Anglophone position ranks it first, then adding
further Francophone positions does nothing to help the overall match rate, as
the English-speaking-only student is still left without a position - and indeed
leaves those Francophone positions unfilled. This mirrors the current situation
in the CaRMS where English-speaking-only students seem to be bear the brunt
of the unmatched issue, while Francophone positions go unfilled.

However, now observe what would happen if there were 2 Anglophone and
2 Francophone positions. Then, even if the bilingual student gets matched to an
Anglophone position, there is still one left over for the English-speaking-only
student. Similarly, they cannot compete the French-speaking-only student out
of a position because there is still one position left over for the French-speaking

Journal of Mechanism and Institution Design 5(1), 2020



“p_04” — 2020/12/10 — 17:36 — page 110 — #12

110 Matching with compatibility constraints

only student. This example provides the motivation for the following section.

3.3. Establishing an 𝐼-saturating stable matching

An 𝐼-saturating matching is defined as a matching in which, for all 𝑖 ∈ 𝐼,
𝜇(𝑖) ≠ {∅} (Gibbons, 1985). Thus an 𝐼-saturating stable matching is a
matching that is also stable.

As the illustrative example above showed, it is insufficient to set the number
of positions equal to the number of students. Consideration must be given to
the number of Anglophone and Francophone positions individually. As well,
the role of preferences is important. For example, with 2 Francophone and 1
Anglophone position, if the bilingual student is matched to the Francophone
position then no student will go unmatched. However, the issue is that a social
planner choosing how many hospital positions to have (which mimics the
situation in Canada well, as funding for residency positions comes from the
government) does not know a priori how the students will rank the hospitals
nor how hospitals will rank students.8If only the very limited information of
how many there are in each class is known, how many residency positions
should be allocated, such that every student obtains a position no matter what
ends up transpiring during the residency application process? In the vein of the
illustrative example, we will establish a necessary and sufficient condition such
that no student is unmatched in all possibilities of (a form of) preferences.

First, we introduce a new definition for preference completeness. If every
student finds all their respective compatible hospitals acceptable, and vice
versa, i.e., every hospital finds all of their respective compatible students
acceptable, then we say that preferences are compatibility-wise complete, or
CW-complete. To use the language of Irving et al. (2008) and others who study
the smi problem, complete preferences would be satisfied if every hospital-
student pair is acceptable to both hospital and student; due to compatibility
constraints, this is generally not possible. However, CW-complete preferences
are, in that sense, as complete as preferences can be under these constraints.

Next, we introduce some additional notation to make the statement easier

8 There are a host of factors that contribute to how hospitals rank applicants, including marks,
reference letters, academic publications, and community service (Lakoff et al., 2020). Similarly,
there are a host of factors that contribute to how students rank hospitals, including prestige,
reputation in a particular medical field (for example, students interested in trauma medicine
would like to go to premier trauma centers), family, and cost of living (Dow et al., 2020).
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to read. Let the set of English-speaking-only students be 𝐸 , the set of French-
speaking-only students be 𝐹, and the set of bilingual students be 𝐵, with sizes
𝑒, 𝑓 , and 𝑏, respectively. These are all subsets of 𝐼, and we label their elements
as: 𝐸 = {𝑖𝐸1 , 𝑖

𝐸
2 ...𝑖

𝐸
𝑒 }, 𝐹 = {𝑖𝐹1 , 𝑖

𝐹
2 ...𝑖

𝐹
𝑓
}, and 𝐵 = {𝑖𝐵1 , 𝑖

𝐵
2 ...𝑖

𝐵
𝑏
}. Let the set of

Anglophone hospitals be 𝑋 and the set of Francophone hospitals be 𝑌 , with
total quotas 𝑥 and 𝑦, respectively. We restrict 𝑒, 𝑓 , 𝑏, 𝑥, 𝑦 > 0. Let the set of
all possible CW-complete preferences be P. Then, we can show the following
result.

Theorem 1. Every stable matching is 𝐼-saturating in all instances of CW-
complete preferences if and only if 𝑥 ≥ 𝑒 + 𝑏 and 𝑦 ≥ 𝑓 + 𝑏. Formally:
(∀𝑃 ∈ P)(every student has a position in all stable matchings)⇔ (𝑥 ≥
𝑒 + 𝑏) ∧ (𝑦 ≥ 𝑓 + 𝑏).

Proof. We first prove the ‘if’ part of the statement: every stable matching
is 𝐼-saturating in all instances of CW-complete preferences if 𝑥 ≥ 𝑒 + 𝑏 and
𝑦 ≥ 𝑓 + 𝑏.

Suppose to the contrary that student 𝑖 does not have a position in some
stable matching. Let the number of students with the same characteristic as
𝑖 (note this includes bilingual students), including 𝑖, be 𝑘 . Note that if 𝑖 is
bilingual, then 𝑘 is the number of students that share at least one characteristic
with 𝑖, and so 𝑘 is the number of English-speaking-only, French-speaking-only,
and bilingual students - i.e. all students.

As preferences are CW-complete and the matching is stable, student 𝑖 does
not form a blocking pair with any of its compatible hospitals. By assumption,
the number of positions with 𝑖’s characteristic is weakly greater than 𝑘 , and
because students cannot occupy more than one position, at most 𝑘 − 1 positions
with 𝑖’s characteristic are filled, and at least one position compatible with
student 𝑖 is left unfilled. By CW-completeness, student 𝑖 and the hospital with
that unfilled position form a blocking pair. Thus, the matching is not stable,
which is a contradiction. Therefore, every student is matched in all stable
matchings for all instances of CW-complete preferences.

Next, we prove the ‘only if’ part of the statement. Consider its contrapositive:
(𝑥 < 𝑒 + 𝑏) ∨ (𝑦 < 𝑓 + 𝑏) ⇒ (∃𝑃 ∈ P)(there exists a stable matching at
which some student is unmatched). It suffices to show the existence of such a
matching 𝜇 for some 𝑃, so we will use a constructive proof.

First, consider the case where 𝑥 < 𝑒 + 𝑏. Consider an instance 𝑃 in which:

• Every Anglophone hospital ℎ: 𝑖𝐵𝑚 �ℎ 𝑖
𝐸
𝑛 for all 𝑚 ≤ 𝑏 and for all 𝑛 ≤ 𝑒.
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• Also, every Anglophone hospital ℎ: 𝑖𝐸𝑚 �ℎ 𝑖
𝐸
𝑛 for all 𝑚 < 𝑛.

• Every bilingual student 𝑖: ℎ𝑥 �𝑖 ℎ𝑦 for all ℎ𝑥 ∈ 𝑋 and for all ℎ𝑦 ∈ 𝑌 .

We need to show that some student is left unmatched in some stable
matching. We show that student 𝑖𝐸𝑒 is left unmatched in every stable matching.
Suppose not, so there is a stable matching 𝜇 with 𝑥 < 𝑒 + 𝑏 in which 𝑖𝐸𝑒 is
assigned to an Anglophone hospital ℎ. From the definition of stability, ℎ does
not form a blocking pair with any bilingual or English-speaking-only student.
Under the above preferences, this is only possible if all English-speaking and
bilingual students are matched to some other Anglophone hospital that they
prefer to ℎ. This implies that 𝜇 assigns 𝑒 + 𝑏 students to 𝑥 < 𝑒 + 𝑏 Anglophone
positions, an impossibility. Thus, student 𝑖𝐸𝑒 is left unmatched in every stable
matching.

Along the same lines, we can show that when 𝑦 < 𝑓 + 𝑏 some students go
unmatched in some stable matching for some 𝑃. For example, consider a set of
CW-complete preferences in which:

• Every Francophone hospital: 𝑖𝐵𝑚 � 𝑖𝐹𝑛 for all 𝑚 ≤ 𝑏 and for all 𝑛 ≤ 𝑓 .

• Also, every Francophone hospital: 𝑖𝐹𝑚 � 𝑖𝐹𝑛 for all 𝑚 < 𝑛.

• Every bilingual student: ℎ𝑦 � ℎ𝑥 for all ℎ𝑥 ∈ 𝑋 and for all ℎ𝑦 ∈ 𝑌 .

Following the same steps as in the first case, we obtain that student 𝑖𝐹
𝑓

is left
unmatched in every stable matching, which implies the required result. This
completes the proof for the ‘only if’ part of the statement.

�

Theorem 1 shows that (𝑥 ≥ 𝑒 + 𝑏) ∧ (𝑦 ≥ 𝑓 + 𝑏) is needed for every stable
matching to be 𝐼-saturating. The next result establishes that this condition is
also needed for the existence of an 𝐼-saturating matching in every instance of
preferences.9

Lemma 2. If there exists a stable matching in which every student is matched
∀𝑃 ∈ P, then (𝑥 ≥ 𝑒 + 𝑏) ∧ (𝑦 ≥ 𝑓 + 𝑏).

9 We thank an anonymous referee for constructive suggestions on structuring the proof of Lemma
3.2.
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Proof. We need to show (∀𝑃 ∈ P) (there is some stable matching in which
every student is matched) =⇒ (𝑥 ≥ 𝑒 + 𝑏) ∧ (𝑦 ≥ 𝑓 + 𝑏), equivalently,
(�𝑃 ∈ P) (there is some student unmatched in every stable matching) =⇒
(𝑥 ≥ 𝑒 + 𝑏) ∧ (𝑦 ≥ 𝑓 + 𝑏). It suffices to prove the contrapositive (𝑥 <

𝑒 + 𝑏) ∨ (𝑦 < 𝑓 + 𝑏) =⇒ (∃𝑃 ∈ P)(there is some student unmatched in every
stable matching). The result follows directly from the second part of our proof
of Theorem 1, by observing that the argument is established for every stable
matching. �

In plainer words, Lemma 2 means that, in order to guarantee every student a
match in all CW-complete preference possibilities, the number of Anglophone
positions needs to be at least equal to the number of English-speaking students
(including bilingual students) and the number of Francophone positions needs
to be at least equal to the number of French-speaking students (including
bilingual students). For example, if we have 5 students (2 English-speaking-
only, 2 French-speaking-only, and 1 bilingual), then in order to ensure that
every student is matched (assuming CW-completeness), no matter what the
preferences are, we would actually need 6 positions (3 Anglophone and 3
Francophone) instead of, as we might think at first glance, 5 positions for 5
students.

Such a requirement on positions would also guarantee, by Theorem 1,
that every student is matched in every stable matching, when preferences are
CW-complete. Since the student-proposing DA algorithm specifically gives
the student-optimal stable matching (Roth & Sotomayor, 1992), this result
also applies to the special case of the CaRMS, a fact which might be useful in
policymaking.

From Theorem 1 and Lemma 2 we obtain the following result:

Corollary 2. If there exists a stable matching under which every student is
matched for all CW-complete preferences, at least as many positions as the
number of bilingual students are left unfilled in every stable matching.

Proof. If the assumption in the statement holds, by Lemma 2 𝑥 ≥ 𝑒 + 𝑏 and
𝑦 ≥ 𝑓 + 𝑏 and by Theorem 1 exactly 𝑓 + 𝑒 + 𝑏 students are matched, and so
𝑥 + 𝑦 − 𝑒 − 𝑓 − 𝑏 ≥ 𝑏 positions are left unfilled, in every stable matching. �

In general, from conditions 𝑥 ≥ 𝑒 + 𝑏 and 𝑦 ≥ 𝑓 + 𝑏 in Theorem 1 and
Lemma 2, the total number of positions 𝑥 + 𝑦 ≥ 𝑒 + 𝑓 + 2𝑏 is greater than
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the number of students, 𝑒 + 𝑓 + 𝑏 and some positions must remain unfilled.10

Corollary 2 shows that at least one position for every bilingual student is
left unfilled, and demonstrates the inefficiency of introducing compatibility
constraints in matching markets, in the sense that if language restrictions are
lifted, all positions are filled and no students are left unmatched in every stable
matching with complete preferences.11 Our condition implies that there is an
inherent trade-off for the policymaker deciding how many residency positions
to fund: setting the number of residency positions in accordance with the
lower bound of Theorem 1 would mean that every student is matched, but
would also mean some positions would be unfilled, which could be a waste of
resources. The policymaker must therefore consider these two opposing goals:
guaranteeing a match for every student, or filling every residency position.

4. CONCLUDING REMARKS

In this paper we developed the matching with compatibility constraints model,
where a dual-valued characteristic causes a subset of students to be incompatible
with a subset of hospitals, in order to investigate the phenomenon of language
restrictions in the Canadian medical residency match. This is, to our best
knowledge, the first paper to investigate this unique feature of the Canadian
residency match and use it to explain its present problems under the lens of
standard two-sided matching theory. Notably, we investigated theoretically
how this could lead to the current issue of unmatched students and unfilled
positions observed in the CaRMS. We showed that even when there are more
residencies than students, as is the case in Canada, it is not guaranteed that
every student is able to obtain a position.

We defined a weaker form of preference completeness, called compatibility-
wise completeness, or CW-completeness, which is as complete as preferences
can be under compatibility constraints. We then showed that when we assume
CW-completeness (i.e. all English-speaking students apply to all Anglophone

10 Except for the degenerate case when 𝐼𝐸 ∩ 𝐼𝐹 = ∅, meaning 𝑏 = 0, we effectively have two
separate standard hospital-residents problems: one between the English students and hospitals,
and one between the French students and hospitals. Then, it suffices to have the number of
Anglophone positions equal to the number of English students, and similarly for the number of
Francophone positions equal to the number of French students.

11 Assuming that every student prefers to be matched to their least preferred hospital over going
unmatched, and every hospital prefers to hire its least preferred student than leaving a position
empty.
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residencies), then we can guarantee every student obtaining a position by having
the number of Anglophone positions equal to the number of English-speaking
students and the number of Francophone positions equal to the number of
French-speaking students. Interestingly, the total required number of positions
to guarantee this is greater than the number of students - which contrasts with
the result in standard matching models stating that under complete preference
relations, having positions equal in number to the students guarantees a match
for everyone. Unfortunately, even given this guarantee, we cannot solve the
problem of unfilled residency positions. Rather surprisingly, the number of
bilingual students leads to an increase in inefficiency, in the sense of unfilled
positions in Corollary 2.

The real-world applicability of this prescription may be limited as prefer-
ences in the real world are not likely to be CW-complete. There are significant
logistical hurdles that applicants to residency positions must pass through
for each application, including reference letters and interviews. Due to this,
medical students in the CaRMS do not rank all hospitals with whom they
are compatible. Taking into this account, the number of required residency
positions to guarantee that every student matches is likely to be larger, albeit
by an unknown amount, than the requirement under CW-complete preferences.

Our model certainly has implications for the CaRMS and the analysis of the
current issues that have received so much attention in the medical community.
Its generalized formulation in terms of arbitrary two-valued characteristics
allows it to be applied to any variant of one-to-one and many-to-one matching
situations. For example, in a marriage market, it could be used to analyze the
effect of the existence of religious preferences. Future theoretical work could
take this framework in numerous directions. In addition, it would be interesting
to see how the framework applied empirically to, for instance, the study of the
CaRMS. It would be interesting to see how varying the number of Anglophone
and Francophone positions affects the match rate by simulating the CaRMS.
We leave it to future theoreticians and empiricists to build upon the results laid
out in this paper.
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